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Ahstrct-The collision of two natural-convection boundary layers at the tip of a vertical wedge is used 
to demonstrate that a double-deck flow structure provides a proper description of the heat-convection 
mechanism which is shared by many convection problems with sudden geometry changes. The present 
theory differs from previous work which indicate the existence of recirculating flow regions. This difference 
is due to a failure to recognize that recirculating flow structures can only exist for forced flows, but not for 
natural-convection boundary layers or wall jets. The present solution is obtained by a proper application 
of Prandtl’s transposition theorem for geometries with finite solid displacements and appropriately matches 
the upstream natural-convection boundary layers and the downstream thermal plume. The interaction of 
the local pressure development in the main deck (outer layer) and the displacement of the lower deck (inner 
layer) removes the singularity associated with the boundary-layer equations at the location where the 

viscous layers leave the solid surface. 

I. INTRODUCTION 

THE COLLISION of two boundary layers which are 
driven by body forces are frequently found in fluid 
flows. Examples include flows near the equator of a 
spinning sphere [ 1,2], natural-convection boundary 
layers near the top of a blunt body [3-51 or in a cavity, 
and secondary boundary layers in a curved pipe 
[6-81, or in a heated straight pipe [9]. Since the boun- 
dary-layer equations are parabolic and are not affec- 
ted by downstream activities, the collision phenomena 
cannot be adequately described by the boundary-layer 
equations alone. Independently, Messiter [lo] and 
Smith and Duck [l l] developed a double-deck theory 
which shows that a disturbance inside a boundary 
layer driven by body forces (equivalently, a flow in 
which the motion outside of the boundary layer is 
much slower than that inside) can have an upstream 
influence to a distance of O(s617), where E = Re- “’ or 
Gr-‘j4. Re is the appropriate Reynolds number for 
forced bows and Gr is the Grashof number for natu- 
ral-convection boundary layers. Messiter adopted the 
natural-convection boundary layer along a finite ver- 
tical flat plate as a model problem to show, by this 
double-deck structure, that the boundary-layer solu- 
tion on the plate can smoothly join the solution of the 
thermal plume [12] above the plate. The structure of 
the double deck shares many similarities with the tri- 
ple-deck structure near the trailing edge of a flat plate 
in a uniform stream [13,14]. Smith and Duck were 
interested in developing a general theory to describe 
the collision of two non-parallel wall layers. They 
conjectured that the main boundary layer separates 
at a distance O(Re- 31’4) from the location of the col- 
lision and a relatively large recirculation flow exists 

below the main boundary layer. On the other hand, 
such a recirculating flow has not been identified in the 
numerical solution of the collision of boundary layers 
near the equator of a spinning sphere or in experi- 
ments of natural convection near the top of a blunt 
body. 

The tirst numerical solution of a double-deck flow 
structure was obtained by Smith [15]. The model 
problem studied by Smith involved a rotating disk, a 
degenerate case of a rotating sphere. Two boundary 
layers meet at the edge of the disk and form a free- 
boundary flow. Since the boundary layers are parallel 
and do not collide, no region of recirculating flow 
exists. This problem shares many similarities with the 
problem of natural convection along a vertical finite 
plate [lo, 161. 

The results in a subsequent paper by Merkin and 
Smith [17] clearly cast doubt on the validity of a 
double-deck structure to describe the flow behavior 
near a geometry change. The model problem studied 
by Me&in and Smith is natural-convection boundary 
layers near a corner, or the trailing edge of a vertical 
wedge. They formulated the equations of a double- 
deck structure for corners the angles of which differed 
slightly from 180”, or for wedges of very small angles. 
Their solutions show that recirculating eddies, which 
are physically unrealistic and are not consistent with 
expectation, exist even for these two limiting cases. 

In this paper, natural convection along a vertical- 
sharp wedge (see Fig. 1) is used to demonstrate that 
the double deck is indeed a proper flow structure for 
a weak collision of two boundary layers driven by 
body forces. The key step in formulating the problem 
is to choose a coordinate system in which regions of 
different physics can be properly matched. Prandtl’s 
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NOMENCLATURE 

a constant, equation (13) 
A displacement, equations (17) 

; 

constant, equations (26) 
streamfunction, equations (4) 

9 gravitational acceleration 
Gr Grashof number, equations (1) 
I wedge height 
k thermal diffusivity 

P pressure 
T temperature 
x, y coordinates 
U, v velocities. 

Greek symbols 
CI tan $J 

6 displacement, equations (1) 
E small parameter, equations (1) 

V boundary-layer coordinate, equations (4) 
8 dimensionless temperature, equations (1) 
V kinematic viscosity 

P density 
z shear stress 
4 half-wedge angle 

* streamfunction, equations (7). 

Subscripts 
b natural-convection boundary layer 

P thermal plume 
1 double deck. 

__--- 

OUTER PLUME 

FIG. 1. Physical model and coordinates. 

coordinates, as extended by Yao [ 181, are found to be 
suitable for the problcn and are applied to the double- 
deck equations bt,ore solving them numerically. The 
details are dL,iribed in Section 2. 

Sections 3 and 4 briefly summarize the structure of 
the natural-convection boundary layers on the wedge, 
and the thermal plume above it. This establishes the 
notation and the required matching conditions. The 
double-deck equations are derived and solved in 
Section 5. The reason why the collision is identified as 
‘weak’ will become clear in the conclusion section. 

A proper matching principle is required if a correct 
matching between major regions of different physics 
is to be achieved. For certain problems. The impor- 
tance of the existence of a double-deck solution does 
not rely on its contribution toward improving pre- 
dictive capability in a small region, More important 
is the fact that the structure provides a matching prin- 
ciple among various regions which can occur in the 
flow field of many heat-transfer and fluid-mechanics 
problems involving large parameters without actually 
solving the double-deck equations. On the other hand, 
double decks may be the major part of the flow struc- 
ture for the problem, e.g. as in impinging jets. A direct 

numerical solution of the Navier-Stokes equations for 
such problems frequently fails to provide an accurate 
result due to a lack of resolution in those small regions. 
A direct example to substantiate the above claim is 
the problem solved in this paper. 

Another implication of the solution presented in 
this paper concerns the separation of a forced flow 
under an unfavorable pressure gradient. The sep- 
aration of such a forced flow may be interpreted as 
the collision of two viscous layers, one driven by a 
forced flow and the other by an induced recirculat- 
ing flow. This model is in line with the fact that 
Goldstein’s singularity is not removable for a bound- 
ary layer driven by an adverse pressure gradient [ 191. 
This fact, in turn, implies that the classical boundary- 
layer/inviscid-flow structure assumed globally does 
not yield a correct limiting description of the Navier- 
Stokes equations. Two triple decks and/or double 
decks may provide a proper structure with which to 
match a forced flow with recirculating eddies at sep- 
aration. More work is required to establish a firm 
ground for this conjecture; however, it may provide 
the missing link in obtaining a solution for a large- 
scale separation. 
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ZFORMULATION numerical integration procedure in solving the above 

Cartesian coordinates (Z,g) are used, and the cor- 
equations. 

responding velocities are (~7, 5). The Z-axis is aligned 
The formulation of Merkin and Smith [17] applies 

with the direction of gravity. The half-wedge angle is 
Prandtl’s transformation to their lower-deck equa- 

denoted by 4 = tan-’ u, and the height of the wedge 
tions, but not to their main-deck equations. This limits 

is 1. The wall temperature is held at T, and the ambient 
the height of any geometric change to the same order 

temperature is T, . 
as the thickness of the lower deck. In the present 

The details of the extension of Prandtl’s trans- 
formulation, the lower deck is assumed to be parallel 

position theorem have been discussed by Yao [l&20], 
to the solid surface ; therefore, it is not limited to cases 

and a brief summary is sufficient. The dimensionless 
of vanishingly-small wedge angles. This extension is 
achieved by a proper application of Prandtl’s trans- 

variables in Prandtl’s coordinates are defined by 
formation to the main-deck equations. As has been 
discussed by Yao [18,20], the complete set of boun- 
dary-layer equations in Prandtl’s coordinates can only 
be obtained by transforming the Navier-Stokes equa- 
tions before adopting the boundary-layer approxima- 
tion. Important terms can be erroneously ignored 
if one applies Prandtl’s transformation directly to the 
boundary-layer equations. It can be shown that, for 
a wedge angle of O(E~“), the present formulation is 
almost identical to that of Merkin and Smith. The 
only difference is that the displacement A for the pre- 
sent formulation is measured from the surface of the 
wedge, while theirs is measured from y = 0. Conse- 
quently, the difference between the two solutions in 

+;, p= 
j-S(X) 

1 

(coordinates) 

(velocities) 

p= P-P, 

TzT 
(pressure) 

T-T, 
g=-.-..-- 

Tw-Tm 
(temperature) 

E -4 = Gr = /Ig(T,,,-TT,)13/v2 

(Grashof number) 

U, = v/aGr”* 

(characteristic velocity) 

Pr = V/K 

(Prandtl number) 

(displacement) 

where the subscript after a comma denotes a deriva- 
tive. The dimensionless form of the equations of con- 
tinuity, motion and energy with the Boussinesq 
approximation for density p are 

In transformed space, the wedge is represented by 
9 = 0 for Z? < 0. This substantially simplifies the 

(1) 
the physical space is O(~E~/‘), where h represents the 
normalized solid displacement of the geometry. In 
other words, Merkin and Smith applied Stokes’ 
linearization to their main-deck formulation. This 
limits their solution to very small h. The present 
solution agrees with that of Merkin and Smith in the 
limit LX + 0 (a vertical flat plate [ 161). 

The proper equations for the natural-convection 
boundary layer before the collision, for the plume, and 
for the double deck in Prandtl’s coordinates are de- 
scribed below. They are valid forfinite wedge angles. 

3. NATURAL-CONVECTION 
BOUNDARY LAYER 

The scales for the natural-convection boundary 
layer are well known: the thickness of the boundary 
layer and the normal velocity are O(E). The boundary- 
layer coordinates are 

xb= 1+i, ys=P/E. (3) 

The expansions for the velocities, the pressure and the 
temperature are 

li = (1 +a2)(4xb)‘12fL(qb)+ . . . 

lT= -&(l+t12)(4Xb)-“4(3fb-&J;)+ . . . 

E’=o+... 

f? = e&Q+ . . . (4) 

where subscript b is used to denote that the vari- 
ables are associated with the boundary layer and 
t]s = Y~/(~x~)‘/~. The prime denotes derivatives with 
respect to vs. The substitution of equations (3) and 
(4) into equations (2) with terms of small orders 
neglected, yields the equations for the natural-con- 
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0.0 0.1 0.2 0.3 

(i+cG) f; - 

FIG. 2. Axial velocity of natural-convection boundary layer. 

0.0 0.2 0.4 0.6 0.6 I.0 

8- b 

FIG. 3. Temperature distribution of natural-convection 
boundary layer. 

vection boundary layer. They are 

.&“‘+3&_&‘‘-2fd’ = -6b/(l+t12)3 

&s;f+3f& = 0. 
(5) 

The associated boundary conditions are 

% = 0, fb =f; = 0, & = 1 

(wall condition) 

qb -+ co, f;, eb --+o 

(matching with quiescent ambient). (6) 

The solutions of equations (5) satisfying conditions 
(6) can be easily obtained by numerical integration. 
A typical axial velocity profile and temperature dis- 
tribution are given in Figs. 2 and 3 for 4 = o”, 30” and 
60”, respectively. It is clear that the magnitude of the 
velocity decreases and the thickness of the boundary 
layer increases for wedges of larger angles. This is 
because the component of the buoyancy force parallel 
to the surface of the wedge decreases when the wedge 
angle increases. Consequently, the heat-transfer rate 
and wall shear are smaller for a larger-angle wedge. 

In Prandtl’s coordinates, the axial direction is not 
parallel to the surface. Thus, the axial momentum 
equation is the projection of the momentum equation 
along the solid surface onto this axis. One would 
expect that the solution of the axial momentum equa- 
tion in Prandtl’s coordinates might be restricted to the 
case of a small angle between the axial direction and 
the surface. Therefore, the natural-convection boun- 
dary-layer equations in the coordinates normal and 
parallel to the wedge are solved independently in order 
to find the restriction on Prandtl’s transformation. 
The local wall heat flux and shear stress are compared. 
It is found that these two quantities, predicted by 
solving the equations in two different coordinate 
systems, agree for all wedge angles (up to 85” in 
our computations). However, since Prandtl’s trans- 
formation is singular for a wedge with a half angle of 
90” (a horizontal plane), it is reasonable to expect that 
the computations will become increasingly difficult as 
this limiting angle is approached. 

4. THERMAL PLUME 

An additional advantage of adopting Prandtl’s 
coordinates is that the axial velocity of the trans- 
formed natural-convection boundary layer is in line 
with that of the near plume, and the two velocities 
can be readily matched at _? = 0. Consequently, the 
distribution of velocity and temperature inside a ther- 
mal plume for small ,i? is essentially similar to that 
above a vertical plate of finite length [ 121, but with a 
different initial condition. Since its structure is also 
very similar to the Goldstein [19] near-wake solution 
behind a flat plate, Yang’s solution [12] consists of 
two parts, an inner plume and an outer plume. The 
solution form is briefly outlined below. 

The normal coordinate is defined as y, = P/E to be 
consistent with the fact that the plume is thin. The 
appropriate expansions for small y, (inner plume) are 

$ = (3i)*‘3L;‘;f0(Y/)+ . 

6 = 1+ (32)“11; ‘p ,g&)+ . 
(7) 

where 

Y/ = n;“y;(3a)“’ 

a, = J2(1 +cc’)f,‘(o) 

and $ is the streamfunction and is introduced to 
satisfy equation (2),. The governing equations for f0 
and go can be obtained by substituting equations (7) 
into equations (2) and collecting terms of equal pow- 
ers of 2. The result is 

f;“+2fJb”‘-fo’* = cl 

;A; + 2fogb -fAgu = 0. 

(8) 
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The prime denotes the derivative with respect to the 
appropriate independent variable. 

The required conditions for the inner plume 
become : 

(1) 

(2) 

q=o: fo=fo”=g;,=O 

(symmetry condition) ; 

r/+00: &+?/+a, 

90 + rl+c,. 

(9) 

The expansions for y,, N O( 1) (outer plume) are 

$ = Y’b(y,)+(3~),‘3Y,(yp)+. . . 

0 = o,(y,)+(332)“30,(yp)+. . . 
(10) 

where 

‘Pi = ,/2(1 +a*)& and Ob = Bb = 0,(x, = 1). 

Similarly, the governing equations for Y’s and O’s 
can be obtained from equations (10) and (2). They are 

yr;yr;-yr;yr, = 0 
(11) 

Y;lO, -Y ,o;, = 0. 

The solutions of equations (11) are 

Y, = a,l;,‘3Y;(y,) 
(12) 

@ = a&‘/3@’ I b 

in order to match with the inner plume. It is obvious 
that the structure of the solution for a plume above a 
wedge is identical to that above a vertical plate. Its 
solution can be found in ref. [16] and is not repeated 
here. Constant a, can be determined from the numeri- 
cal solution of equations (8) ; the result is 

is 
is 

a, = p% [(2fo)“*-rl] = 0.6185. (13) 

5. DOUBLE-DECK STRUCTURE 

Since the y-component of the velocity in the plume 
singular at Z = 0, a double-deck structure [lo, 1 l] 
required to join the solutions of the natural-con- 

vection boundary layer and the thermal plume. The 
present formulation is for a finite solid displacement 
and has not been derived before. 

We will describe the double decks. Following 
Messiter [IO], the dimensions of the main deck are 
a6/’ x E. The stretched coordinates become 

2 
x, =p 

y, =+ 
(14) 

The expansions of the dependent variables are 

li = Y’6(y,)+e*“u,(x,,y,)+ . . . 

ti = &Q,(x,,y,)+ . . . 

@ = s4”p,(x,, y,)+ . . . 
(15) 

fJ= e&,)+E*“o,(x,,y,)+ . . . 

The equations governing the above dependent vari- 
ables can be derived from equations (2). They are 

(16) 

The solutions of the above equations can be expressed 
as 

aI = Y’b’(y,)A,(x,) 

VI = -YCxY,M’,(xJ 

‘Y;(Y ,)* dy, (17) 

0, = @xY,)A,(x,). 

The above equations show that A;’ is not con- 
tinuous at x, = 0, but that A, and A’, are continuous. 
This implies that U, and u , are continuous at x, = 0. 
Consequently, the normal velocity in physical space 
is not continuous due to the discontinuity of tl (see 
equations (1)). Physically, this discontinuous normal 
velocity represents the colliding velocity component 
of the two boundary layers. The advantage of adopt- 
ing the Prandtl transformation for the main deck is 
that the discontinuity of the colliding velocity is 
removed. This is the key reason why the present 
numerical results do not contain physically unrealistic 
recirculating eddies. Since the streamwise velocity 
component is continuous at the collision, this suggests 
that a ‘fine’ flow structure near the collision point 
is required to smooth out this discontinuity, but its 
contribution is smaller and less important to the pre- 
sent problem. For a collision of two asymmetric natu- 
ral-convection boundary layers, the direction of the 
thermal plume immediately above the collision will be 
determined by the fine flow structure in this small 
region. 

A lower deck is needed since solution (17) does 
not satisfy the wall condition on the cylinder. The 
thickness of the lower deck is 0(e9/‘). Therefore, 
9 = ~~/‘y’/‘1;~/‘y, and the expansions of the depen- 
dent variables, which match with the variables of the 
surrounding areas, are 

a=& *“y”‘L:“U(x, y)+ . . . 

d = &5”y- “‘1:%(x, y)+ . . . 

@ = &4”y*“#‘p(x, y)+ . . (18) 

0 = 1 +&*“y”7L;4”&o(x, y)+ . . 

A, = y”712;4’7A(~) 
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where 

and 

its derivative is enforced in the numerical solution. 

x=y -3!7~yx, Since the double decks provide a mechanism of vis- 
cous-inviscid interaction, this allows a large adverse 
pressure gradient to be established over a relatively 
small region. Therefore, a smooth solution can be 

‘I’;‘dy,. obtained across the collision point. In other words, 
the catastrophe of the classical boundary-layer theory, 

Substitution of equations (18) into equations (2) gives 
due to Goldstein’s singularity at the collision point, 
is avoided by the introduction of the double-deck 

au au structure. 
-+-=0 
ax ay The numerical method used to solve equations (19) 

u; +a; = - i..+;Y ; +(1 +a2)2 
is almost identical to the one used previously [16,17]. 

ay 
A central-difference scheme is used for derivatives 

ap 0 
with respect to y and a backward scheme is used for 

5= (19) x-derivatives. The grid size of 0.01 was selected after 

ao ao (1 +d) a20 trials with values of 0.02 and 0.005. The results are 

Uz+“&=Pray2. believed to be accurate to the third decimal point. 
For x + - co, the solutions asymptotically 

Expansions (19) must match with the boundary-layer approach 
solution as x -+ - co so that 

u - y+$‘(y)bek” 
u-+y and 0-y. (20) v - - $(y)b ekX 

As y + co, they must also match with the main deck p - - 0.8972kb ekx 

u -+ y+A(x,) and 0 -+ y+A(x,). (21) A - b ekx 

On the surface of the cylinder, y = 0 and x < 0, the 
wall conditions are 

where k = 0.8972(1 +cr2). $(y) satisfies 

(26) 

(27) 

and conditions 

au ao 
v=--=-co 

ay ay 
(23) 

(i) y = 0, $I' = $I = 0, $t"'= -0.89723 

(ii) y+co, $‘+l. (28) 

are applied along y = 0 for x > 0. Finally, since the 
normal pressure gradient vanishes across the lower 
deck 

-1 
P = PI(Y = 0) = t1+d(2f”(X). (24) 

Physically, A(x) represents the displacement effect of 
the lower deck, and can be determined from the solu- 
tion of the lower deck. The main-deck solution 
matches with the boundary-layer solution as x + - co 
and the outer plume as x -+ co. This implies that 

A(-co)-+0 and A(co)+a,(3~)“~. (25) 

An in-depth interpretation of A(x) and its role in 
transmitting a disturbance upstream within these thin 
wall layers can be found in refs. [lo, 11 161. 

Since TV assumes different values for x < 0 and 
x > 0 (see equations (l)), equations (19) must be 
solved separately and then matched at x = 0. One 
should note that the lower-deck solution can be 
obtained by marching downstream without knowing 
the upstream normal velocity component. Equations 
(24) and (25) define a two-point boundary-value prob- 
lem which transmits the disturbance upstream. Special 
attention is required to obtain the solution of this 
problem. The continuity of the displacement A(x) and 

Numerical iteration starts at a selected x_ m with a 
guessed b. The value of b is adjusted until the bound- 
ary condition at x- iu is satisfied. We found that, for 
large tl, it is necessary to choose a smaller value of 
x_ m. This is because the range of upstream influence 
decreases as a increases, as indicated by equations 

(26). 
The lower-deck displacement A(x) is plotted for 

4 = O”, 30” and 60” in Fig. 4. The range of upstream 
influence decreases as C$ increases in agreement with 
the asymptotic solution, equations (26). Equation (25) 
is also plotted in Fig. 4 to show that A(x) asymptot- 
ically approaches the downstream condition for 
x > 8. For a larger 4, a greater distance is required 
for A(x) to approach the result of equation (25). The 
induced pressure is given in Fig. 5. A favorable pres- 
sure gradient is developed along the wedge. Down- 
stream of the wedge, the pressure starts to recover and 
overshoots the ambient pressure before it asymptot- 
ically returns to the ambient pressure. A stronger fav- 
orable pressure gradient for a larger C#J is indicated by 
the numerical solution. It also has a higher overshoot 
and takes a longer distance to merge with the ambient 
pressure. The increase of the wall shear and the wake 
velocity along y = 0 are presented in Fig. 6. The larger 
shear stress at the tip of the wedge for smaller 4 is the 
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FIG. 4. Displacement A(x). 

P 

t 
-0.4 

FIG. 5. Pressure distribution. 

-I 

-4 -2 0 2 4 6 

FIG. 6. Wall shear and centerline wake vetocity. 

consequence of the longer distance of the upstream 
influence. The centerline wake velocity increases 
more slowly for a wedge of larger angle. 

It is clear that no recirculating flow has been iden- 
tified by the numerical double-deck solution. This 
agrees with experimental observation and our expec- 
tation. It should be noted that the decreasing distance 

of the upstream infhtence of the interaction with 
increasing wedge angles is expected. This is a conse- 
quence of the fact that the natural-convection bound- 
ary layers become weaker for a larger wedge angle. 
Of course, there is no flow when the half-wedge angle 
becomes 90” (a horizontal plane). This rules out the 
possibility of using the present problem to discuss a 
‘head-on’ collision of two boundary layers. Never- 
theless, the present results suggest that the zeroth- 
order velocity normal to the direction of a head-on 
collision is zero. The collision process cancels the 
momentum of the colliding streams, and occurs within 
a shorter distance than the axial extent of a double 
deck. Further effort is required in order to delineate 
the collision flow structure. The above reduction, 
however, is in line with the observation of the collision 
of natural convection boundary layers above a hori- 
zontal cylinder [4]. 

The drag on one side of the wedge, obtained by 
integrating the perturbation of the wall shear from 
the boundary-layer solution, is 

z = ~‘(1 +cx~)“~[O.~& +~?‘y~“1f’~r,] (29) 
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Table 1. Coefficient for wall shear REFERENCES 

tan-’ c( 11 Y % 

0” 0.4780 0.6528 0.4332 
30 0.3336 0.6075 0.2476 
60” 0.0845 0.4616 0.2797 x lo-’ 
80” 0.0011 0.1927 0.2711 x 1O-4 

where 

The values for 1,) y and z, are listed in Table 1. The 
numerical solution has been obtained for 4 up to 85”. 

6. DISCUSSION AND CONCLUSION 

The collision of two inclined viscous layers driven 
by buoyancy has been described. No recirculating 
eddies have been indicated, which agrees with exper- 
imental observation. The local extra wall shear stress 
and heat flux contribute little to the total drag and 
heat flux. The importance of the existence of a correct 
double-deck solution is not to improve the predictive 
capability for such complex flows. The flow structure, 
which describes how a viscous layer collides with 
another, or with a solid wall, provides a proper mat- 
ching principle between two viscous layers upstream 
and downstream of the collision point. The solutions 
for these viscous layers can then be confidently cal- 
culated by a marching technique, since their governing 
equations are parabolic differential equations. 

The double-deck solution presented in this paper 
indicates that the matching of a downstream viscous 
layer with an upstream layer can be simply achieved 
by aligning them. This is how the natural-convection 
boundary layer along a wedge provides an initial con- 
dition for the downstream plume. It is believed that 
the same matching principle can be applied to other 
flows. 

The collision is called weak because the flow model 
adopted in the paper cannot be extended to a head- 
on collision. Further study is required to understand 
the flow structure in a head-on collision. 
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UNE FAIBLE COLLISION DE DEUX COUCHES LIMITES DE CONVECTION NATURELLE 

R&m&La collision de deux couches limites de convection naturelle g I’extrkmitt d’un coin vertical est 
consid&r&e pour montrer qu’une structure d’Bcoulement B double couverture foumit une description 
convenable du m&canisme de convection qui est concern& par des problkmes de convection avec des 
changements brusques de g&om&ie. La prksente thtorie diffkre des travaux pr&&dents qui indiquent 
l’existence de rttgions d’&coulement B Jecirculation. Cette diffkrence est due au fait que les structures 
d’&coulement recirculantes n’existent que pour les &coulements for&s, mais pas pour les couches limites de 
convection naturelle ou les jets parittaux. La solution est obtenue ici par une application appropriee du 
thkorirme de transposition de Prandtl pour les gbom&ries avec des d&placements finis de solide et elle 
convient aux couches limites ascendantes de convection naturelle et au panache thermique descendant. 
L’interaction du dCveloppement local de pression dans la couverture principale (couche exteme) et du 
d&placement de la couverture basse (couche inteme) d&place la singularitd associ&e aux Equations de la 

couche limite vers l’endroit oti les couches visqueuses quittent la surface solide. 
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EIN SCHWACHER ZUSAMMENSTOSS DER GRENZSCHICHTEN ZWEIER 
NATURLICHER KONVEKTIONSSTRGMUNGEN 

Z~~nf~~-~r ZusammenstoB der Gre~~chichten zweier nat~rlicher Knnvektionsstr~mun~n 
an der Spitze eines senkrechten Keils wird benutzt urn zu zeigen, daB eine zweitagige Str~mun~struktur 
eine geeignete Beschreibung des Warmetransports durch natiirhche Konvektion und vieler Stromungs- 
probleme mit plotzlich wechselnder Geometrie erlaubt. Die vorgestellte Theorie unterscheidet sich von 
friiheren Arbeiten, die auf die Existenz von Rtickstrijmgebieten schlieBen lassen. Dabei wurde vollig 
vergessen, da0 Riickstrijmungen nur in erzwungenen, nicht jedoch in der Grenzschicht natiirlicher Kon- 
vektionsstriimungen oder bei Wandstrahlen auftreten konnen. Die hier vorgestehte Losung wurde durch 
eine Anwendung des Prandtl’schen ~~rlagerungstheorems fur Geometrien mit endlichen Versetzungen 
erhahen. Sie nahert die Grenz~hicht stromaufw~rts und die Auftriebsfahne stromabw~rts in geeigneter 
Weise an. Die Wechselwirkung zwischen dem ortlichen Druck in der Hauptebene (der IuDeren Schicht) 
und der Verlagerung der unteren Ebene (der inneren Schicht) hebt die Singularitat in den Grenzschicht- 

gleichungen dort auf, wo die Grenzschicht die feste Oberflkhe verllik 

CJIABOE B3A~MO~E~CTB~E ABYX CBOBO~HOKOHBEKT~BHbIX ~OrPAH~~HbIX 
CJIOEB 

hmoTaqm-Ha IlpHhieJE B3aHMOLleiiCTBWl JJByX CB060lUiOKOHBeKTHBHbIX IlOrpaHH'lHbIX CJlOeB B6JIH3H 

BeplUHHbI BepTHKaJTbHO paCllOJIO%EeHHOrO KJlSiHa IIOKa3aH0, 'ITO C IIOMOLUblO IiByXCJlOiiHOfi CTpyKTyPbl 

tlOTOKa MOXWO OIlHCblBaTb MeXaHH3M KOHBeKTHBIiOrO TennoolihteHa 80 MIiOrHX 3aAa'IaX KOHBeKUrlW C 

pe3~ah4 w3MeHeesieMreohfeTpm.,I(aHrranTeopHn 0mwiaeTcs 0~11peLUromenHofi paeee,KoTopan yram- 

nana Ha iiammie 06nacTeE c ~~pKy~~UHe~ noToKa.3~0 0Tnmfie Bo3HHKno H3-3a HexenaHHn np~s- 

HaTb TOT &KT, VT0 ~U~Ky~~~OH~~e XIOTOKH MOI-yT RMeTb MeCTO TOJibKO ZIPH B~Hy~eHHOM 

Tee9eHHH, HO He B CB~~~~~HOKOHB~KTHBI~~IX IlOrpaHH'4HblX CJIOXX HJIH IIpHCTeHHblX CTpySX. Hacronmee 
pemeliue nonyqeH0 6naroaapn HCnOJIb30BiiHSiH) TpaHCll03HUHOWHOii TeOpeMbl npaHnTJI%l MX nparpa- 

HHWibIX odnacreii H XOPOUIO OlIHCblBaeT BOCXOLWIRLuHe CBO60UIiOKOHBeKTHBHbIIe nOrpaHH'#HbIe CJIOH H 

onycrme ITOTOKE~ n TennoBoM @axene. CBix3b hfemy npoueccabm H3Mexiemffl hfecmoro UanneHm B 

OCHOBHOM cnoe (iiapyrHstl)u nepehfeluewffs mixHer cnon (~iy~p~i~di)y~Tp~ff~T caHrynnpiiocrb B 


